State-dependent symplecticity and area preserving numerical methods
نویسندگان
چکیده
منابع مشابه
Liouville Operator Approach to Symplecticity-Preserving RG Method
We present a method to construct symplecticity-preserving renormalization group maps by using the Liouville operator, and obtain correctly reduced symplectic maps describing their long-time behavior even when a resonant island chain appears. There has been a long history to study an asymptotic solution of Hamiltonian flows by means of singular perturbation methods such as the averaging method a...
متن کاملStudy of Positivity Preserving Numerical Methods
The Cox-Ingersoll-Ross (CIR) interest rate model is one of the most celebrated models in financial industry. The CIR interest rate model always has been the focus of study in mathematical finance litrature [2] as well as in the financial industry. It is also the area of interest in numerical science litrature [3 4 6 8 9 10 13 14 15 16 20] because of its non-explicit analytical solution. Signifi...
متن کاملNumerical methods for volume preserving image registration
Image registration techniques are used routinely in a variety of today’s medical imaging diagnosis. Since the problem is ill-posed, one may like to add additional information about distortions. This applies, for example, to the registration of contrast-enhanced images, where variations of substructures are not related to patient motion but to contrast uptake. Here, one may only be interested in...
متن کاملThe lack of continuity and the role of infinite and infinitesimal in numerical methods for ODEs: The case of symplecticity
When numerically integrating canonical Hamiltonian systems, the long-term conservation of some of its invariants, for example the Hamiltonian function itself, assumes a central role. The classical approach to this problem has led to the definition of symplectic methods, among which we mention Gauss–Legendre collocation formulae. Indeed, in the continuous setting, energy conservation is derived ...
متن کاملNumerical Solution of Quadratic Eigenvalue Problems with Structure-Preserving Methods
Numerical methods for the solution of large scale structured quadratic eigenvalue problems are discussed. We describe a new extraction procedure for the computation of eigenvectors and invariant subspaces of skew-Hamiltonian/Hamiltonian pencils using the recently proposed skew-Hamiltonian isotropic implicitly restarted Arnoldi method (SHIRA). As an application we discuss damped gyroscopic syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2007
ISSN: 0377-0427
DOI: 10.1016/j.cam.2006.02.058